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Abstract

In this expository paper,1 we discuss the completeness and decidability of the theory of
abelian groups, the theory of divisible torsion free abelian groups, and the theory of groups
with elements of order at most 2.

1 Introduction

In this section, we introduce the different collections of abelian groups that we will discuss
throughout the paper. Using some basic linear algebra, we will be able to characterize some
of these collections. Even more, we’ll show that some of the theories corresponding to these
collections of groups are decidable. Together with Godel’s Completeness Theorem, this tells us
that we have an effective procedure to figure out if any statement (written in a relatively basic
language) about such a group is “true.”

1.1 Abelian Groups

Let us recall that (G,+) is an abelian group if + : G × G → G is an operation satisfying the
following conditions:

• Associativity: we have x + (y + z) = (x + y) + z for any x , y, z ∈ G.

• Identity: there exists an identity 0 ∈ G so that x + 0= x for any x ∈ G.

• Inverse: for every x ∈ G, there exists y ∈ G such that x + y = 0.

• Commutativity: x + y = y + x for every x , y ∈ G.

Since our standard definition of a group has a very “axiomatic” nature, it’s quite easy to
give a formal set of axioms for the theory of abelian groups. Let L be a language with equality,
one binary function symbol +, and one constant symbol 0. For notational convenience, we will
write x + y instead of + x y. Also, let us write x ̸= y for ¬ x = y. Allow Σab to consist of the
following sentences:

∀x∀y∀z (x + (y + z) = (x + y) + z)

∀x(x + 0= x)
1We assume some elementary knowledge of logic, linear algebra, and group theory.
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∀x∃y(x + y = 0)

∀x∀y(x + y = y + x)

Then, it’s clear that (G,+, 0) is a model for Σab iff it’s an abelian group.2 Throughout the
paper, we will use the notation Tab := CnΣab and Kab :=Mod Tab, so that Tab is the theory of
abelian groups and Kab is the collection of all abelian groups.

1.2 Divisible Torsion Free Abelian Groups

Besides discussing the theory of abelian groups, will also explore some specific subcollections
of abelian groups satisfying some additional properties. Remember that we say x ∈ G has order
|x |= n ∈ Z+ if nx = 0 and kx ̸= 0 for 1≤ k < n where

mx := x + x + ...+ x
︸ ︷︷ ︸

m times

We say that x ∈ G is torsion free if nx ̸= 0 for all n ∈ Z+ and that G is torsion free if x is
torsion free for all x ∈ G \ {0}. Also, we call a group divisible if for every x ∈ G and n ∈ Z+
there exists some y ∈ G such that ny = x . To familiarize ourselves with these definitions, let’s
see some examples.

Example 1. (Q,+) and (R,+) are divisible torsion free abelian groups.

Example 2. The Klein Group V = 〈a, b | a+a = b+b = (a+b)+(a+b) = 0〉 is not torsion-free.
In fact, every element but the identity has order 2.

Example 3. (C×, ·) is not torsion free since i4 = 1. That said, it contains torsion free elements
such as 2 (note that 2n ̸= 1 for all n ∈ Z+). It’s a divisible group since it’s closed under taking
n-th roots.

Example 4. (Z,+) is a torsion free abelian group that fails to be divisible.

As we did with abelian groups, let’s axiomatize the theory of divisible torsion free abelian
groups. Let

Σtf = {∀x(x ̸= 0→ nx ̸= 0)}∞n=1

Σd = {∀x∃y(x = ny)}∞n=1

Note that a group is torsion free iff it’s a model for Σtf and is divisible iff it’s a model for Σd.
Hence, G is a divisible torsion free abelian group iff G is a model of Σab ∪Σtf ∪Σd. Throughout

2Note that here we are using the symbols + and 0 for both the syntax and the semantics. Fortunately, this
notational ambiguity won’t led to any issues.
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the paper, we will write Ttf := Cn (Σab ∪Σtf) and Ktf =Mod Ttf so that Ttf is the theory of torsion
free abelian groups and Kab is the collection of all torsion free abelian groups. Also, we will
write Tdtf := Cn (Σab ∪Σtf ∪Σd) and Kdtf =Mod Tdtf so that Tdtf is the theory of divisible torsion
free abelian groups and Kab is the collection of all divisible torsion free abelian groups.

1.3 Groups satisfying x + x = 0

We’ll also discuss the collection of groups satisfying that every element in the group has order at
most 2. That is, the collection of models of Σab ∪Σ2 where Σ2 = {∀x(x + x = 0)}. Throughout
the paper, we will write T2 := CnΣ2 and K2 =Mod T2 so that T2 is the theory of abelian groups
with elements of order at most 2 and K2 is the collection of such groups.

Example 5. For any n ∈ Z+, we have

(Z/2Z)⊕ ...⊕ (Z/2Z)
︸ ︷︷ ︸

n times

∈K2

2 An Underlying Vector Space Structure

2.1 Groups satisfying x + x = 0 as F2-vector spaces

Let G ∈ K2. Then, we can think of G as a vector space over F2 =
�

0̄, 1̄
	

where the scalar
multiplication · is given in the obvious way: 0̄ · x = 0 for all x ∈ G and 1̄ · x = x . To show this,
we need to verify the vector space axioms:

• Identity as a scalar: 1̄ · x = x for all x ∈ G.

• Compatibility: (ab) · x = a · (b · x) for all x ∈ G and a, b ∈ F2.

• Distributivity over scalars: (a+ b) · x = a · x + b · x for all x ∈ G and a, b ∈ F2.

• Distributivity over vectors: a · (x + y) = a · x + a · y for all x , y ∈ G and a ∈ F2.

Thanks to the simplicity of our definition of scalar multiplication, it is not hard to check that
(G,+, ·) is a vector space over F2. The only non-trivial check is that (1̄+ 1̄) · x = 1̄ · x + 1̄ · x .
However, this follows from the fact that x + x for any x ∈ G since

(1̄+ 1̄) · x = 0̄ · x = 0= x + x = 1̄ · x + 1̄ · x

It turns out that any G ∈Kdtf also has a natural vector space structure. However, this won’t
be as easy to define nor to verify. In fact, in order to show this, we will first prove that any
G ∈Kt f has an induced Z-module structure.
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2.2 Torsion free abelian groups as Z-modules

Fix G ∈Ktf. We have already defined mx for m ∈ Z≥0 and x ∈ G. Note that we can extend this
definition to any m ∈ Z by letting mx = (−m)(−x) where −x is the unique3 inverse of x for
any m< 0. We will show that this operation, which will sometimes denote by ∗ and sometimes
by no symbol at all, gives us a Z-module structure on G. Recall that a module is like a vector
space, but over a ring instead of a field (see [1], page 337, for a formal definition). We need to
prove that ∗ : Z× G→ G satisfies

• Identity as a scalar: 1 ∗ x = x for all x ∈ G.

• Compatibility: (ab) ∗ x = a ∗ (b ∗ x) for all x ∈ G and a, b ∈ Z.

• Distributivity over scalars: (a+ b) ∗ x = a ∗ x + b ∗ x for all x ∈ G and a, b ∈ Z.

• Distributivity over “vectors”: a ∗ (x + y) = a ∗ x + a ∗ y for all x , y ∈ G and a ∈ Z.

First, we prove the following lemma:

Lemma 2.1. For any x ∈ G and n ∈ Z, we have −(nx) = n (−x) = (−n) x .

Proof: Note that the second equality is immediate from our definition of ∗ so it suffices to
prove the first equality. If n ≥ 0, all we are saying is that nx + n (−x) = 0, which is clear. If
n< 0, then

−(nx) = −((−n) (−x)) = (−n) x = n (−x)

by the lemma for positive integers. □

Proposition 2.2. (G,+,∗) is a module over Z.

Proof: 1x = x follows immediately from the definition of ∗. If a, b ∈ Z≥0, the compatibility of
∗ is straightforward. This suffices, since we know that we can push the − symbols to the right
by Lemma 2.1. As an example, we show the case in which a < 0≤ b:

(ab) x = (−(−a)b) x
= ((−a)b) (−x)
= (−a) (b (−x))
= a (b x)

Since both distributivities are clear from the definition of ∗, we are done. □
3This is an elementary result of group theory. To see this for abelian groups, note that if y and z are both

inverses for x , then y = (x + z) + y = (x + y) + z = z.
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2.3 Divisible torsion free abelian groups as Q-vector spaces

Fix G ∈Kdtf. Let us show that we can think of G as a vector space over Q. It turns out that to
even defining the scalar multiplication will be challenging.

Lemma 2.3. For each x ∈ G and n ∈ Z \ {0}, there exists a unique y ∈ G such that x = ny .

Proof: Suppose we have y, z ∈ G such that ny = x = nz. Then, ny + n(−z) = 0 where −z is
the unique inverse element of z. Since G is abelian, we get that n(y + (−z)) = 0. This tells us
that y + (−z) = 0 since we assumed G is torsion free so we conclude that y = z. □

Lemma 2.3 allows us to make the following definition:

Definition 2.1. We say that y ∈ G is the divisor of x ∈ G by n ∈ Z \ {0} if y is the unique
element such that x = ny . In this case, we write y := x

n .

Now, let φ : Z×Z+ × G→ G be given by

φ(p, q, x) = p
x
q

Let us show that φ induces a map Q× G→ G. To see this, we need to check that

p1

q2
=

p2

q2
=⇒ φ(p1, q1, x) = φ(p2, q2, x)

for all x ∈ G, pi ∈ Z, and qi ∈ Z+. Assume the antecedent, so that p1q2 = p2q1. Then,

q1q2φ(p1, q1, x) = q1q2p1
x
q1

= q2p1 x
= p2q1 x

= q1q2 p2
x
q2

= q1q2φ(p2, q2, x)

by an implicit use of the compatibility of ∗. Since Lemma 2.3 gives us that ax = a y =⇒ x = y ,
we get that φ(p1, q1, x) = φ(p2, q2, x). Hence, this induces a map Q× G→ G given by

p
q
· x = φ(p, q, x)

Let us show that this map acts as scalar multiplication. To do so, we’ll need the following
easy lemma.

Lemma 2.4. We have
x

nm
=

�

x
n

�

m
for any x ∈ G and n, m ∈ Z+.
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Proof: By Lemma 2.3, it suffices to see that

nm
x

nm
= x = n

x
n
= nm

�

x
n

�

m
□

Proposition 2.5. (G,+, ·) is a vector space over Q.

Proof: We need to show that the vector space axioms are satisfied by (G,+, ·). Let us first prove
that

�

p1

q1
·

p2

q2

�

· x =
p1

q1
·
�

p2

q2
· x
�

Thus, we need to prove that

p1p2
x

q1q2
= p1

�p2
x
q2

q1

�

(1)

By Lemma 2.3, it suffices to show that Equation 1 mutiplied by q1q2 on both sides holds. Note
that

q1q2p1p2
x

q1q2
= p1p2 x

= q2p1p2
x
q2

= q1q2p1

�p2
x
q2

q1

�

Clearly,

1
1
· x =

x
1
= x

so all we are left to do is to show distributivity. Note that

q
x + y

q
= x + y = q

x
q
+ q

x
q
= q
�

x
q
+

x
q

�

Hence, we get that

x + y
q
=

x
q
+

x
q

by Lemma 2.3. Then, Proposition 2.2 gives us that

p
q
(x + y) = p

x + y
q
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= p
�

x
q
+

y
q

�

= p
x
q
+ p

y
q

=
p
q

x +
p
q

y

Lastly, let us prove distributivity over scalars. Note that

�

p1

q1
+

p2

q2

�

· x =
p1q2 + p2q1

q1q2
· x

= (p1q2 + p2q1) ·
x

q1q2

= p1q2
x

q1q2
+ p2q1

x
q1q2

= p1q2

�

x
q1

�

q2
+ p2q1

�

x
q2

�

q1

= p1
x
q1
+ p2

x
q2

=
p1

q1
· x +

p2

q2
· x

With this, we conclude that (G,+, ·) is a vector space over Q. □

3 Categoricity

Lemma 3.1. Tdtf is κ-categorical for any κ > ℵ0.

Proof: Let G, H ∈Kdtf be such that |G|= c= |H|. By Proposition 2.5, we know that G and H
are vector spaces over Q. Let β be a basis for G and γ be a basis for H. Note that |β |= κ= |γ|
since Q is countable and hence |span(S)| = |S| for any infinite set S. Thus, there exists a
bijection ψ : β → γ. We know from linear algebra that we can extend any bijection of bases to
an isomorphism of vector spaces. Thus, G and H are isomorphic as vector spaces and therefore
also as groups. □

Since the only finite torsion free abelian groups is the trivial group,4 we know that Tdtf is
n-categorical (vacuously) for any n ∈ Z≥0. However, it turns out that Tdtf is not κ-categorical
for any cardinal κ, as shown by the following claim:

Claim 3.2. Tdtf is not ℵ0-categorical.
4This will be formally shown later on, see Lemma 4.7.
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Proof: Note that Q,Q2 ∈ Kdtf. Thus, they are both models for Tdtf. Let us prove that Q and
Q2 are not isomorphic as abelian groups and hence that Tdtf is not ℵ0-categorical. Suppose by
contradiction that Q≃Q2 and that ϕ was such an isomorphism. Since Q has dimension 1 as a
vector space over Q, we have a non-trivial pair (a, b) ∈Q2 such that aϕ(e1) + bϕ(e2) = 0 for a
basis {e1, e2} of Q2. Then,

0= ϕ−1(0)

= ϕ−1(aϕ(e1) + bϕ(e2))

= aϕ−1(ϕ(e1)) + bϕ−1(ϕ(e2))
= ae1 + be2

This is absurd since we assumed that {e1, e2} was a basis for Q2 and that (a, b) ̸= 0. We
conclude that Q ̸≃Q2. □

Note that the the divisibility condition is essential in the proof of Lemma 3.1:

Claim 3.3. Ttf is not c-categorical for c= |R|.

Proof: Consider G = { f : Z→ Z} with pointwise addition. Then, |G| = ℵℵ0
0 = 2ℵ0 = c. Note

that G ̸≃ R since R is divisible while G is not. Hence, Ttf is not c-categorical. □

Tdtf is c-categorical despite that Ttf is not because divisible torsion free abelian groups have
a vector space structure while torsion free abelian groups only have a module structure. This
difference is important because for Z-modules (that are not finitely generated) we cannot say
much about their bases (if they even exist). Fortunately, the same argument we used to show
Lemma 3.1 gives us a similar result for T2:

Lemma 3.4. T2 is κ-categorical for any infinite cardinal κ.

Proof: Let G and H be groups with elements of order at most 2 such that |G| = κ = |H|.
We’ve shown that G and H are vector spaces over F2. Let β and γ be a basis for G and H,
respectively. Since span(S) is finite for any finite S, we must have |β |= κ= |γ|. Hence, there’s
a bijection β → γ that can be extended to a vector space isomorphism. In particular, G and H
are isomorphic as groups. □

4 Completeness and Decidability

Two of the most interesting properties we can ask our theories to satisfy are those of completeness
and decidability.

Remark 4.1. Tab is not complete since for τ = ∃x(x + x = 0) we have (F2,+) |= τ but
(R,+) ̸|= τ.

Remark 4.2. T2 is not complete since if we let τ be the sentence that asserts the existence of
only 2 elements, then Z/2Z |= τ but (Z/2Z)⊕ (Z/2Z) ̸|= τ.
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Now, let

Σ∞ = {∃v1∃v2...∃vn(v1 ̸= v2 ∧ ...∧ v1 ̸= vn ∧ v2 ̸= v3 ∧ ...∧ v2 ̸= vn ∧ ...∧ vn−1 ̸= vn)}
∞
n=1

and define T2∞ = Cn (Σab ∪Σ2 ∪Σ∞) and let K2∞ =Mod T2∞. Although Remark 4.2 shows
that T2 is incomplete, if we also ask its models to be infinite, then the resulting theory is indeed
complete, as shown by the following theorem:

Theorem 4.3. T2∞ is complete.

In order to prove the theorem, let us first recall the celebrated Łoś–Vaught Test.

Theorem 4.4 (Łoś–Vaught Test). Let T be a theory in a countable language with no finite
models. Then, if T is κ-categorical for some infinite cardinal κ, then T is complete.

The proof of the Łoś–Vaught Test can be found in Enderton’s textbook (page 157 of [2]).
Now, the proof of Theorem 4.3 is reduced to putting two pieces together:

Proof (Theorem 4.3): This follows immediately from the Łoś–Vaught Test and Lemma 3.4. □

Corollary 4.5. T2∞ is decidable.

Proof: Recall that any complete, axiomatized theory is decidable. However, note that this
theory is axiomatized by a decidable collection of sentences: Σab ∪Σ2 ∪Σ∞. □

Remark 4.6. Tdtf is not complete since for τ = ∃x(x ̸= 0) we have (R,+) |= τ but ({0},+) ̸|= τ.

In some way, Remark 4.6 is misleading since simply adding the condition ∃x(x ≠ 0) to Tdtf

suffices to make it complete. To prove it, we first need the following lemma:

Lemma 4.7. If 0 ̸= G ∈Kdtf, then |G|=∞.

Proof: Let 0 ̸= G ∈Kdtf. Since G ̸= 0, there exists x ∈ G such that x ̸= 0. Note that nx ̸= mx
for all m< n: otherwise, we would have (n−m)x = 0, contradicting the assumption of G being
torsion free. Hence, {nx}∞n=1 is an infinite subset of G and hence G is infinite. □

Let Tdtf∞ = Cn (Σab ∪Σd ∪Σtf ∪ {∃x(x ̸= 0)}) and let Kdtf∞ =Mod Tdtf∞.

Theorem 4.8. Tdtf∞ is complete.

Proof: This follows immediatealy from the Łoś–Vaught Test, Lemma 3.1, and Lemma 4.7. □

Corollary 4.9. Tdtf∞ is decidable.

Proof: Note that Σab ∪Σtf ∪Σd ∪ {∃x(x ̸= 0)} is decidable. □
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