
Exploring Gauss codes on higher genus surfaces

Eric Och and Dylan Fridman

November 2020

Abstract

We prove that for any curve γ minimally embedded on a surface S, the
four following properties are equivalent: 1) γ has an alternating diagram,
2) between every instance of a symbol in the Gauss code of γ there are
an even number of letters, 3) γ is 2-colorable, and 4) γ crosses every
fundamental loop of S an even number of times. We also discuss without
much depth other ideas related to Gauss codes of curves on orientable
higher genus surfaces.

1 Introduction

We began thinking the question of how to characterize the unsigned Gauss codes
that are minimally embeddable on the torus. As an example the code [abab]
cannot be embedded on the plane regardless of the signing but can be embedded
on the torus:

Thus, 1 is the minimum genus surface in which we can embedded a curve
with Gauss code [abab], so we say that [abab] is minimally embeddable on the
torus. There’s an O(n) solution for the problem of deciding whether a given
unsigned Gauss code is minimally embeddable on the plane, but as far as we
know there’s no efficient algorithm for the torus. Clearly, there’s an exponential
time solution by computing the euler characteristic for every possible signing.
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The planar solution checks for two conditions, the simplest one being that
between the two instances of each letter in the unsigned Gauss code there should
be an even number of letters. For example, [abcabc] satisfies the parity condition
whereas [abab] doesn’t.

Some of the progress done towards a linear time solution for surfaces different
than the sphere assumes that the embedding of the curve is 2-colorable. It
seemed reasonable to us that the problem is also more approachable whenever
the parity condition holds, so we conjectured that there might be some kind of
relationship between the 2-colorability and the parity condition. Most of our
work is related to exploring this relationship.

2 Main results

2.1 Basic definitions

Definition 1 (Gauss code). We define an unsigned Gauss code G as a sequence
of length 2n in which each element of a set S with n elements occurs twice in
G. We define a signed Gauss code as an unsigned Gauss code in which each
instance of a symbol has a + or − associated to it, but no two instances of the
same symbol have the same sign.

Remark. Every curve in which every intersection is a double crossing naturally
corresponds to a family of unsigned Gauss codes and a family of signed Gauss
codes, in which the symbols represent the crossings of the intersections, and the
signing corresponds to the orientation of the crossing.

Definition 2 (Parity condition). We say that a Gauss code G satisfies the
parity condition if and only if (iff from now on) for all the elements s in S (the
image of G), there are an even number of symbols between each occurrence of
s in G. We’ll also say that a curve satisfies the parity condition iff any of its
corresponding Gauss codes satisfies the parity condition.

Definition 3 (2-colorable). We say that a curve is 2-colorable iff the dual graph
of the graph that corresponds to the curve is bipartite.

Definition 4 (Essential parity). We say that a curve γ embedded in a surface
S of genus g is essentiality even iff it goes through each edge of the 4g-gon
representing S an even number of times. If a curve is not essentially even, it’s
essentially odd.
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2.2 Original conjecture

At first, we thought that perhaps the three properties defined previously (parity
condition, even essentiality and 2-colorability) are equivalent. This doesn’t
actually hold:

The above curve satisfies the parity condition but is not essentially even.
Also, clearly there’s something wrong with the conjecture because the Gauss
code doesn’t have the information of how many times the curves wraps around:
there are infinitely many curves, each corresponding to a different element of
the fundamental group of the torus that have [aa] as their Gauss code.

However, we have the unformalized intuition that if a Gauss code is min-
imally embeddable, then the information for the essential parity is contained
within the code. This is because minimal embeddability implies that no side
in the 4g-gon representing the surface is left uncrossed by the curve, and glue-
ing any additional loop will probably have to cross the curve (and will thus be
registered on the Gauss code).

Thus, we ended reformulating the conjectured equivalence as follows:

Theorem 1. For any curve γ on a surface S such that the Gauss code of γ is
minimally embeddable on S, γ satisfies the parity condition iff γ is essentially
even iff γ is 2-colorable.

The proof is divided into several lemmas, given in the next subsections.

2.3 Minimally embeddable → cellularly embeddable

Lemma 1. Any curve minimally embedded on a surface S is also a cellular
embedding on S.

Proof. Assume for contradiction that a minimally embedded curve γ on S is not
celullarly embedded. Then, there is face containing a fundamental loop of S.
We know that if we cut a fundamental loop of any surface we reduce its genus
by 1, but we now get an embedding of γ onto T , a surface with a smaller genus
than S, contradicting the minimality of the embedding.
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2.4 Parity condition and the alternating diagram

Definition 5 (Alternating diagram). An alternating diagram for a curve γ is
an assignment of under or over to every crossing such that each intersection
has one of its crossings going under and the other one over.

Example of an alternating diagram:

Lemma 2. Any curve satisfies the parity condition iff it has an alternating
diagram.

Proof. If a curve satisfies the parity condition, we can simply alternate between
over and under for each letter in the Gauss code, and given that between any
pair of the same symbol there is an even number of letters, we will always
assign opposites values to the positions with the same symbol. If a curve has
an alternating diagram, then in the Gauss code we must have gone through an
even number of letters between any pair of the same symbol in order for one
instance of the symbol to be under and the other one to be be over.

2.5 Parity condition implies 2-colorable

Lemma 3. Any curve γ minimally embedded on a surface S that satisfies the
parity condition is 2-colorable.

Proof. We now know that the parity condition is equivalent to having an al-
ternating diagram. We take the graph G representing γ and give every edge
of G a direction: it goes from the undercrossing to the overcrossing. This is
clearly well-defined because of the existence of an alternating diagram. Thanks
to the minimal embeddability, we know that the graph is cellularly embeddable
by Lemma 1, so the boundary of every face is a cycle of edges. We now note
that the head of each dart is the tail of another one. This follows from the fact
that any neighbouring edges in the boundary of a face correspond to different
crossings, so if one points towards the node, the other one points away from it.
Thus, every face has either a clockwise boundary or a counterclockwise bound-
ary. Given that any two neighbouring faces share a dart, which in one face will
be pointing counterclockwise and on the other one clockwise, we can assign a
color to each face depending on the orientation of its boundary and conclude
that γ is 2-colorable.
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2.6 2-colorable → essentially even

Lemma 4. If a curve is 2-colorable then it is essentially even.

Proof. Suppose for contradiction that the curve γ is not essentially even. Then,
the 4g-gon representing γ has a side that is crossed an odd number of times.
However, this implies that the number of faces bordering the side are also odd,
and they are in a cycle. Thus, the dual of the graph representing the curve is
not bipartite and the curve is not 2-colorable.

With this, we can also conclude that if a curve γ is minimally embedded on
a surface S, and satisfies the parity condition, then γ is essentially even. We are
going to need this later on. Note that all we are left to do to finish the proof of
Theorem 1 is showing that if γ is essentially even (and minimally embedded),
then γ satisfies the parity condition.

2.7 Parity condition is preserved through homotopy

2.7.1 0→ 1 and 1→ 0

It should be clear that the 0→ 1 and 1→ 0 moves preserve the parity condition
because they simply add 2 identical symbols to a random part of the gauss
code. The gap between these two symbols is 0 (even) and the other gaps either
increase by 2 or do not change.

2.7.2 3→ 3

The intital state of 3→ 3 move on a gauss code which fulfills the parity condition
is either:

[x, y, S1, y, z, S2, z, x, S3],

[x, y, S1, y, z, S2, x, z, S3],

[x, y, S1, z, y, S2, z, x, S3], or

[x, y, S1, z, y, S2, x, z, S3]

(where Sn is a string of even length). Performing the 3 → 3 move changes
these gauss codes by swapping every pair of symbols between the Sn’s. For
example, [x, y, S1, y, z, S2, z, x, S3] transforms to [y, x, S1, z, y, S2, x, z, S3]. All
of these swaps preserve the parity condition for x, y, and z, and clearly it still
holds for any other letter in Sn, thus it is preserved globally.

2.7.3 0→ 2 and 2→ 0

These moves only preserve the parity condition when the graph is essentially
even, but since we have shown that the parity condition (along with minimally
embedded) imply that something is essentially even, this can be assumed. Ulti-
mately, this section will show that an embedding being essentially even implies
that homotopy moves preserve the parity condition.
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Let us show that 2→ 0 moves preserve parity conditions. Since every 2→ 0
simply deletes 2 pairs of adjacent letters in the Gauss code, it clearly preserves
the parity condition.

Now, let us consider a 0→ 2 move that creates two new intersections a and
b. The gaps between all the other letters (similarly to in the 0 → 1 move) are
increased by 0, 2 or 4 as the new bigon is empty so there are no letters between
a and b (within the bigon).

So all we have to show is that, with an essentially even curve, the gaps be-
tween the two copies of a and the gaps between the two copies of b are even.
Since they are adjacent, the a-gaps and the b-gaps are the same parity. So
WLOG, let us focus on the a gaps.

There are actually 2 a-gaps, corresponding to the gap ’outside’ of the two ’a’s
and the gap ’inside’ the two ’a’s. They are coloured red and green respectively
in the diagram below.

We imagine that the two red strands connect at some point, as do the two
green strands. We aim to show that the number of intersections on either the
red or the green strand is even (they must have the same parity as their sum
plus 2 for the copies of a add to 2n for a gauss code with n distinct letters).
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Not shown in the diagram are the numerous intersections that will define
the parity of the lengths of these segments. These intersections fall into two
sections. The first is self intersections of the red loop with itself or of the green
loop with itself. These increase the length of those segments by 2 (as both copies
of the letter corresponding to the self-intersection are in the same gap, green or
red) Thus these do not impact the parity of the gap.

The other section is the intersections between the red and green loops. There
must be an even number of these in total for the gaps to be of even parity.

Since the overall curve is essentially even, the number of essential loops of
each ’type’ must be even. What I mean by type is the number of paths from
one edge to the opposite edge for each such pair of edges. On a torus there
are 2 (2 pairs of sides on the square configuration space), on a double torus, 4
etc.. Since the green and red segments are both closed loops, they must contain
whole numbers of each of these types of essential loops. For type t, let 2pt be the
number of essential loops (since it must be even) and gt and rt be the number
of green and red loops of that type s.t. gt + rt = 2pt. Let Gt and Rt be the
sets of these loops. Then for each pair of types i and j, we are interested in the
number of intersections betwen the segments of the curve that comprise Gi and
Rj . By enumerating all of these we will find all the red green intersections in
the curve.
Before we do this, we may need to perturb the curve and perform some 3 → 3
so that these sets can be seen clearly. We want the curve to look like it does in
the diagram below
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That is to say, the parts of the curve which are vertically essential and parts
of the curve which are horizontally essential are distinct. This can be achieved
by pushing the intersections up and down the curve without having them meet
(which does not change the parity because it does not change the gauss code)
and with 3 → 3 moves. It is okay for these vertical and horizontal essential
curves to wiggle and intersect themselves and eachother (such as a few of the
red vertical ones do in the bottom left corner as long as we break up all the
diagonals into 1 horizontal and 1 vertical component.

This can aslo be done, albeit more complexly, on higher genus surfaces by
breaking down each ’diagonal’ into multiple segments which each go between
opposite sides rather than non-opposite sides

Once we have done this, we can consider two pairs of sides. On the torus
2g-gon, there are only 2 pairs of sides, but on higher genus surfaces we will still
enumerate it 2 pairs at a time.

Say we have sides i, i’, j and j’ where sides are opposite to their prime ver-
sions. Then we will have red lines going from i to i’ (Ri), red lines from j to j’
(Rj) and Gi and Gj .

We are only interested in the intersections of Ri and Gi, Rj and Gi, Ri and
Gj and Rj and Gj . For the pairs Ri and Gi and Rj and Gj , the lines are running
in the same direction. Any time a strand crosses another, it must eventually
cross back over, otherwise it has made progress towards an essential cycle of the
other type (ie if a vertical green line crosses a vertical red line to the left and
never crosses back over, it is using part of the horizontal green line, so by our
original set of transformations that crossing will not happen in this pairing).
This idea is shown below, where if you ensure that each type of essential loop
starts and ends in a small neighborhood, then all the red-green crossings must
happen in pairs otherwise the red and green would start and end on different
sides of each other

What that means is that there must be an even number of crossings in these

8



pairings. In the other pairings, where the sets are ’perpendicular’ to each other
we have the situation as below.

In this section, again, there are trivial crossings which come in pairs where
the wiggles in the lines can mean the a red essential line crosses a green essential
line multiple time, however, since each red line must cross the green lines an odd
number of times in order to go from one side of the octagon to the other, each
red line has an odd number of crossings with each green line. For the sake of
parity, we can consider these odd numbers of crossings to be 1. Then there are
ri ∗ gj crossings here. Likewise for the other pairing there are rj ∗ gi crossings.

Total number of crossings for these 2 pairs of edges:

=ri ∗ gj + rj ∗ gi
=ri ∗ (2pj − rj) + rj ∗ (2pi − ri)
=2pjri + 2pirj − 2rjri

=2(pjri + pirj − rjri)

This number is even, so for each pair of sides, the number of intersections is
even. Since every intersection happens between two lines which each belong
to one of the types, the total number of red-green intersections (and thus the
length of the gap between copies of a) is a sum of these even values and is thus
even.

Thus the letters for the intersections created by a 0 → 2 move have even
length gaps and so 0→ 2 moves preserve the parity condition.
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2.8 Putting it all together

Now that we have shown that assuming that a curve is essentially even, the
parity condition is preserved through homotopy, all we need to do is show that
there exists some curve β homotopic to our original curve γ that satisfies the
parity condition.

Consider each fundamental loop of our surface we can consider the following
homotopic way of crossing the loop:

Let’s take an arbitrary intersection. We want to show that it will go through
an even number of other intersections before coming back. We note that the
curve will intersect for every wrap above it, and then it will cross every wrap
before coming back. Thus, the number of crossing will be 2k for some k, and
thus even.

Now that we established that even essentiality implies the parity condition,
we’ve finished proving Theorem 1.

2.9 2-colorability is preserved through homotopy

We have finished the proof of Theorem 1, but we’ll give a direct visual proof that
2-colorability is preserved through homotopy, which may give a better intuition
of the correspondence between 2-colorability and the parity condition.

We know that any homotopy between curves can be decomposed into five
moves (read [2]). We show that 2-colorability is preserved through these moves.

Lemma 5. For any pair of homotopic curves γ1 and γ2, γ1 is 2-colorable iff γ2
is 2-colorable.
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Proof. The 1→ 0 move and the 0→ 1 move preserve 2-colorability because the
face contained by an empty loop doesn’t change the 2-colorability, we can always
color it in the opposite color of the only face with which it shares boundary.
The 2-colorability can be preserved through a 3 → 3 by switching the color in
the inside of the triangle. Lastly, the faces created with a 2 → 0 move don’t
share an edge and thus can be colored in the same color than before the move.

Some drawings might prove helpful to understand the lemma:

3 Other interesting problems

3.1 Shortest minimally embeddable Gauss codes

One unresolved question we tackled is what’s the minimum length that Gauss
code needs to have to be minimally embeddable in an orientable surface of genus
g. Note that there are two variants of the same problem, one considering signed
Gauss codes and the other one considering unsigned ones. Let’s denote by {An}
and {Bn} the sequences representing the minimum number of intersections that
a curve needs to have such that its Gauss code is minimally embeddable on a
surface with genus n, unsigned and signed respectively.
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Note that An ≥ Bn for all n, because if we have an unsigned Gauss code that
can be embedded on a surface S, we can then take the signing of the embedding
to get a signed Gauss code that can also be embedded on S.

We computed a few elements of both sequences (or bounds), along with some
corresponding Gauss codes:

Genus An Bn Unsigned example Signed example
0 0 0 ∅ ∅
1 2 2 abab ABab
2 5 3 ababcdcede ABacbC
3 6 5 abacdedbfcfe ABabCDEced
4 11 ≥ A4 ≥ 8 7 ABabCDcdEFegfG

The upper bound for the genus 4 unsigned case was obtained from the Gauss
code [aghbakcdkghedbfcfoepop], which cannot be realized on an orientable sur-
face with genus smaller than 4.

We note that all of the examples with an even n satisfy the opposite of
the parity condition: between every symbol there’s always an odd number of
symbols, this indicates that gauss codes which violate the parity condition can
have higher minimum genera while staying shorter than their counterparts which
fulfill the parity condition.

3.2 Classifying Curves on Non-Orientable Surfaces

The added factor of non-orientability introduces new types of intersections for
signed gauss codes. The first thing to note is that the standard signing—where
a ’+’ indicates that the other strand crosses this part of the curve from left to
right and a ’-’ indicates that it crosses from right to left—does not work in non-
orientable surfaces. This is because left and right are not consistently defined
on non-orientable surfaces. It can be most clearly seen by simply moving the
intersection over the boundary which is connected with a twist. The diagram
below shows what happens when this is done:
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Each time you cross over an edge with a twist, left and right swap and so
the signed gauss code changes. This means that our old definition of left and
right are unsuitable.

Instead, we will draw a red line on one side of the curve (which we will call
left), effectively thickening it. Then, we can consider a crossing to go from left
to right when it hits the red side of the thickened curve first, and then the black.
Likewise if it first hits the black, then the red, we consider the crossing right to
left. These classifications are consistent even if we move the intersection over
an edge connected with a twist.

This, of course, restricts us to orientable curves, meaning those which com-
plete a whole number of twists (rather than any half twists). This corresponds
to curves which traverse the twisted edges of the configuration space an even
number of times. Otherwise the red line would finish its first traversal of the
black line on the opposite side to the one at which it started.

An orientable curve would then look like this:

Also in this diagram, we see that this new classification yields 3 different
types of intersections, seen in intersection a, b and c. Both crossings in inter-
section a are from left to right and both in b are from right to left. c is actually
the normal crossing we have on orientable surfaces where 1 crossing is left to
right and the other is right to left. The diagram below shows that all possible
crossings fit into these categories:
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Any intersectiion can be rotated so that the red and black lines are in the
orientations shown, and then the four different directions that each strand com-
prise all possible intersections. As we can see, these break down into three
categories (both left, both right and 1 right 1 left). The two crossings in the
middle are equivalent since the top one turns into the bottom one when it is
moved over an edge connected with a twist.

One thing to note is that this system works exactly the same if we draw the
line on the right (or simply consider it to be already on the right, such as if we
had started drawing the line from the triangle to the left of intersection a). All
this does is flips the ’sign’ (- = right to left, + = left to right) of every symbol.
For instance, the curve above has two ’signed’ gauss codes depending on this
choice, for simplicity, upper case letters correspond to + and lower case to -.
With that in mind, the curve above is AbAcCb or aBaCcB.

Recall that any finite unsigned gauss code can be embedded on an orientable
surface of finite genus by simply adding a handle for every connection. With
this new signing, we are no longer restricted in our signed gauss codes to have 1
+ and 1 - for each letter, as a result, we can embed any finite signed gauss code
(with any signing at all) on a non-orientbale surface of finite genus by adding a
handle and/or a crosscap for every connection.

4 Next steps

There were many questions that we didn’t have enough time to explore fully.
First of all, our original question: how to efficiently decide if an unsigned Gauss
code is minimally embeddable on the torus. Also, we would like to see how
the distribution among the genera look like for the a gauss code of length 2n.
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Also, it would be very interesting to investigate more the sequences {An} and
{An} mentioned in the subsection Shortest minimally embeddable Gauss codes.
Lastly, it would be helpful to read up on the current literature on the field.

5 Appendix

5.1 Python code

All the code written for this project can be found at https://github.com/

Raikhen/final-project-cs49.
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