
Checkmate, Climbers
Ranking Climbing Difficulty with the Elo Rating System

Cooper LaPorte Jonah Weinbaum Dylan Fridman

Abstract

We compute a database of the Mountain Project climbing catalog storing information of
over 240,000 climbing routes and their associated reviews and comments. Using public
information from this website, we develop what might be the first climbing grading system
based on empirical data and not on the subjective opinion of climbers.

1 Introduction

1.1 Climbing and Climbing grades

Despite there being no objective metric to determine how hard a given rock climbing route is to
climb, climbers throughout history have used different grading systems to judge the difficulty
of climbing routes. However, they all fundamentally rely on the climbers’ opinions. When a
route is climbed for the first time, the first ascensionist proposes a grade and, as time passes
and different climbers try the route, a consensus is reached, and the grade is determined. Thus,
climbing grades are completely subjective.

Although most climbers think of climbing grades as being relatively reliable, there are many
reasons to question their reliability. For example, many times people talk about grades in
the context of the area: they don’t say that a climb is 5.8 but “Yosemite 5.8”. This particular
clarification tries to convey that the climb might be harder than what the number itself might
communicate. Furthermore, it is common knowledge that the earlier in climbing history that a
given climbing route was established, the “stiffer” it will be (i.e., harder for the given grade).
Furthermore, there is such a diverse range of climbing styles that performing well in a given
style doesn’t mean that the skills will translate to a different style (consider crack climbing and
friction slab as an example).

Given all of this, it is only natural to try to come up with a grading system that doesn’t rely
on human opinion but is determined entirely by looking at the empirical data: are climbers
more likely to fall climbing route X than climbing route Y ? Well, then route X might be harder
than route Y . Although this simple idea only allows us to compare a pair of climbs, comparing
every pair of routes gives us a linear ordering of climbs by difficulty, which is exactly what a
grading system tries to accomplish.

1



1.2 Mountain Project

Mountain Project is a virtual guidebook with information about most climbing routes in North
America. For any given climb uploaded to the website, there is a lot of data such as the difficulty
of a climb, user reviews and comments, images, and in-depth descriptions. The site contains
roughly 300,000 routes, 250, 000 of which are located in the US.

One of the many features of Mountain Project is that it allows climbers to “tick” (log) a
climb after they’ve done it. When they do so, they are given several options to further specify
how well they did on that climb:

• Solo: done without a rope.

• Onsight: no falls, first go, no previous information about the route.

• Onsight: no falls, first, with previous information about the route.

• Redpoint: no falls.

• Fell/Hung: had to weigh the rope at least once throughout the climb.

Most of the people who tick their climbs on Mountain Project also allow these ticks to
be public, which in turn means that we can scrape them. We then use this information to
empirically determine if a given climb is harder than another one. For example, if there’s a
climb X that most people solo or onsight while climb Y is rarely “sent” (climbed without falls),
then route Y is definitely harder than route X . In order to obtain a linear ordering from these
pairwise comparisons, we use the Elo Rating System.

1.3 The Elo Rating System

In 1960, the United States Chess Federation updated its ranking system to that of a system
developed by chess player and statistician Aprad Elo. The aptly named Elo rating system was
designed to rank players based on statistical estimation. The system considers each player’s
performance as a random variable, Aprad made the guiding assumption that each such variable
was distributed according to some normal distribution - that is, players may perform particularly
exceptionally or poorly but in general, their performance closely matches the mean of the
distribution. A player’s performance relative to another player tells us who we would expect to
win, and we can use such an expectation to detect upsets where an underdog player performs
better than we anticipate. Formally, we define

R1 = Player 1’s Rating

R2 = Player 2’s Rating

Where these ratings lie roughly in the range of 100-2400. All players are originally given
some base rating (say 1400). Then we have that the expected score (where a score of 1 is a
game win and 0 is a game loss) of a player for a given game is

E1 =
1

1+ 10(
R1−R2

400 )

2

https://www.mountainproject.com/


E2 =
1

1+ 10(
R2−R1

400 )

When a player’s score (denoted Si) exceeds their expected score (Ei) we update their rating
to correct for the fact that their rating was underestimating their performance. We update
according to the following formula

R′i = Ri + K(Si − Ei) (1)

Where K is a constant that adjusts the maximum amount a player’s rating can update. In
theory, with sufficient matches, a player rating converges such that their expected score Ei is
truly reflective of their score in a given game.

2 Methodology

2.1 Data Storage

Given the large amount of data being scraped, we wanted to ensure that data was backed up
to a location that our whole project team could access. To do this, we built a Mongo NoSQL
database on a server in the Trust Lab in the ECSC building. The database has a number of
collections each pertaining to various components of website data including:

1. Areas - Areas point to other areas and ultimately to routes contained in areas

2. Routes - Route information including page text, descriptions, and difficulty

3. Users - Information including names of any users who have left a comment or tick on a
route

4. Ticks - Information regarding the climbing style a user used on a route and whether or
not they completed the route

5. Comments - General comments users left on a route to describe their thoughts

To illustrate how these collections reference each other we consider the following schema
diagram

3



Areas
_id parent_id . . .

Routes
_id area_id . . .

Users
_id . . .

Comments
_id route_id user_id . . .

Ticks
_id route_id user_id . . .

The database will be backed up after project completion but the Mongo server will not be
maintained.

2.1.1 Accessing the Database

The database will be temporarily kept online for graders though at the grader’s request an offline
copy can be sent (it is simply to large to submit on canvas). To access the database through a
Mongo shell, one must be on the eduroam network and can use the following connection string:

mongodb://EvilMonkey:&a@JREztYS5@EyPL@10.28.54.198:27017/?retryWrites=true&w=majority

2.2 Data Retreival

Data was scraped using methods from class, though at a much larger scale. This required
efficient data processing as well as a great deal of parallelization, state tracking, and efficient
database queries.

We first began by populating all routes and areas into our database by scraping through
the route directory in a breadth-first search. We developed a state tracking system to quickly
return to recently checked routes when the program crashed and this allowed us to (with lots
of error checking) produce a full database of all routes in the United States.

We then indexed through each route, scraping comments and ticks and for each such en-
try examining the user who left the comment/tick and added them to our user database. Given
that there are millions of ticks this was far too slow to compute without parallelization so we
added a system of dividing routes among cores and tracking the state of all workers in case one
failed. Even so, we were only able to scrape roughly 3500000 ticks with the time constraints

4



but this was sufficient to get a reasonable model that seemed to roughly track the difficulty
level.

2.3 Ranking Routes

We consider climbing as a zero-sum game similar to chess. That is, two routes can play a match
where the more difficult route wins. In this system, the performance of a route is directly tied
to a route’s difficulty. To accurately rank performance we use the Elo rating system as described
above. Each route is given a base rating of 2,000. We consider two routes to compete in a
match whenever a user ticks both routes. Thus, we go through each user that has ticked climbed
(in random order), and for each pair of routes they have ticked, we give each route a score
from 0 to 4 that depends on how well the climber did on that route.

Climbing Style Route’s score
Solo 0

Onsight 1
Flash 2

Redpoint 3
Fell/Hung 4

If the climber did it in several styles, we take the lowest score. Then, we can get a number
in [0, 1] that represents how much harder is route X than route Y (for this particular climber)
by taking

SX :=
tX − tY + 4

8

where tX is the score of route X and tY is the score of route Y . We can then use SX to update
the Elo ratings of route X as in Equation 1.

It is worth noting that we exclude from our final analysis routes that didn’t get to play
enough matches. Specifically, we only consider the final Elo ratings of routes that were ticked
by more than 50 active users and we consider a user to be active if it has at least 10 ticks. We
note that this rating scheme makes absolutely no use of the difficulty grade of the route thus
making this a completely independent rating system.

2.4 Codebase Structure

The codebase is submitted along with this report on canvas but can additionally be found at the
GitHub repository raikhen/scraping-mp [©].

2.4.1 Utility Functions

Our codebase offers several utility functions in the utils folder. These include

5

https://github.com/Raikhen/scraping-mp


1. logger.py : Handles data and error logging. Contains custom print functions that can be
used to turn logging on or off. Logged statements are stored in a logs directory in the root
folder. Each run of the program will have a unique identifier that will tie it to a specific
log file.

2. resume.py : Handles returning to a former state when traversing the route directory. Given
a route or area identifier, this will determine the original area from which the identifier
originated.

3. scrape.py : Handles given a route identifier, these functions are able to extract route, tick
and comment information as well as useful information about the overall route directory.

4. grade_utils.py : An enum used to quickly translate between route difficulty gradings and
a simple numerical system.

5. db_utils.py : Handles connecting to the Mongo database as well as downloading the
database for offline use.

2.4.2 Primary Functions

The main program files in the root folder are as follows

1. config.py : The file is simply used for stating whether values are logged, where they are
logged, and whether the progress bar is used (though this fails in parallelized versions of
functions).

2. mp_db.py : This handles the population of the database with areas, routes, users, ticks,
and comments. It contains multiple versions of some functions some of which are parallel
and some which are not.

3. analysis.py : This determines the correlation between our rating system and the rating
system which Mountain Project uses.

4. compute_elo.py : This handles the ranking algorithm, examining and querying the database
to perform matches between routes and update their relative rating.

3 Results

Since we only considered single-pitch rock routes and we further filtered routes to those that
we could get a good estimate for, our final analysis uses a subset of 4454 routes. We obtain
a correlation of ≈ 0.61 between the Elo rating and the climbing grade. Figure 1 allows us to
further visualize the relation between the climbing grade and our computed Elo rating. These
results could mean one of two things:

• Climbing grades are very unreliable. Although the correlation is far from insignificant,
one can’t retrieve the climbing grade from the Elo rating. Thus, it makes us think that
the likelihood of someone falling on a climb doesn’t actually correspond accurately to a
climbing grade.

6



• Our Elo rating system is too inaccurate. It could be that requesting every route to
play at least 500 matches (that correspond to at least 50 different climbers) is not strong
enough of a requirement and that we need more data to get a better estimate of a climb’s
difficulty.

Regardless, this is still new territory in that, as far as we have found, this is the first objective
climbing grading system. The fact that any correlation exists is somewhat surprising given that
there was no consideration of the route difficulty grade in our Elo calculation.

Figure 1. The relation between climbing grade and the Elo rating. Although we can distinguish a 5.7 from a
5.12d by the Elo rating, we cannot distinguish grades that are closer by.

4 Future Analysis

Due to time constraints, some difficulties in parallelization, and parsing issues, we weren’t
able to scrape every tick. In theory, this should create more matches which could help routes
converge to a more objective difficulty level.

It would also be interesting to try slight variations on how we compute the Elo rating. It
would be interesting to test if the Elo difficulty corresponds better to the climbing grade if we fix
the number of matches each route can play or if we try different scoring functions (see get_score
in compute_elo.py). We could also further break down climbers by time periods to account for

7



their improvement.

We had also discussed other zero-sum constructions of comparing routes. One option was to
simultaneously rank climbers as well as routes by considering a route to "win" if a climber could
not complete the route and to "lose" otherwise. There are potentially many other constructions
that could more accurately rank route difficulty but this was meant more as a proof of concept
and now that we have the database these further constructions would be much easier to test
going forward if a future researcher wants to copy the database for testing.

Language sentiment analysis in comments could also be a further avenue for considering
route difficulty. The huge amount of comments made this large-scale analysis intractable given
the time left after scraping was completed.

Finally, this problem structure presents interesting generalizations in a graph streaming model
which may be worth researching in its own right. That is, given a directed multigraph repre-
senting matches between nodes (where direction indicates who won a match), how can one,
with space smaller than the number of nodes, query which route we expect to win given two
routes? A simple example of this problem can be illustrated by the graph and stream below

A B C
1

2

3

4
5

6

with subsequent stream σ = 〈1,5,3,6,4,2〉. The algorithm would then be asked to query
whether A or C would be expected to win in a match, doing so without storing the ranking of
every node. This problem could be generalized even further if we don’t assume every node
begins with the same base rating. After a discussion with Professor Amit Chakrabarti we suspect
there may be a relationship between this problem structure and the vertex ordering problem on
directed edge graph streams [1].

5 Conclusion

We believe that this empirical approach to climbing grades will eventually become the standard
and we hope that this is a first step towards reaching that goal. We encourage others to use our
database to compute statistics about routes across the United States as well as to create other
models for objective rating systems.

References

[1] Amit Chakrabarti, Prantar Ghosh, Andrew McGregor, and Sofya Vorotnikova. Vertex
ordering problems in directed graph streams. Proceedings of the Fourteenth Annual ACM-
SIAM Symposium on Discrete Algorithms, page 1786–1802, 2020.

8



[2] Dylan Fridman, Jonah Weinbaum, and Cooper LaPorte. Scraping-mp. https://github.com/
Raikhen/scraping-mp, 2023.

9

https://github.com/Raikhen/scraping-mp
https://github.com/Raikhen/scraping-mp

	Introduction
	Climbing and Climbing grades
	Mountain Project
	The Elo Rating System

	Methodology
	Data Storage
	Accessing the Database

	Data Retreival
	Ranking Routes
	Codebase Structure
	Utility Functions
	Primary Functions


	Results
	Future Analysis
	Conclusion

