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Abstract

Steinitz’s theorem is a beautiful result that completely characterizes the combinatorial
structure of convex 3-polytopes, commonly known as convex polyhedra, in terms of their
corresponding graphs. In this expository paper, we present a relatively self-contained proof
using graph-theoretic tools.

1 Introduction

Steinitz’s theorem is a beautiful result that completely characterizes the combinatorial structure
of convex 3-polytopes, commonly known as convex polyhedra. From now on, we will mean
convex 3-polytope any time we say polytope. The statement of the theorem is as follows:

Theorem 1.1 (Steinitz’s Theorem [6]). The function mapping a 3-polytope to its correspond-
ing graph is a bijection onto the set of 3-connected, simple, planar graphs.

Even though the statement itself is remarkably simple, it is certainly nontrivial. Some of the
reasons that make the statement even more interesting are the fact that no similar statement
has been found in higher dimensions, and that no simple proof of the theorem is known. In our
paper, we present a graph-theoretical proof of Steinitz’s theorem that mostly follows Ziegler’s
exposition in [10], which establishes a bijection between the set of convex 3-polytopes and the
set of simple, planar, 3-connected graphs. However, before diving into the proof, we introduce
the concepts from graph theory that are required to understand both the statement and the
proof.

Definition 1.1. Let G be a graph. G is simple if it contains no loops and no multiple edges
between two vertices. G is planar if it can be drawn on the plane in such a way that no two
edges cross each other. G is d−connected if the graph obtained by removing any d − 1 vertices
of G is connected.

Throughout our paper, we will be interested in 2-connected and 3-connected graphs. The
picture below shows two graphs that are both simple and planar, one of them being 2-connected
and the other being 3-connected.
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(a) (b)

Figure 1. (a) A 2-connected graph that is not 3-connected. (b) A 3-connected graph.

With these few notions from graph theory, we can start the proof.

2 The graph of a convex 3-polytope is simple, planar, and
3-connected

We begin the proof by creating a map that produces the graph of any given 3-convex polytope.
We denote this map by Π and we define it as follows: given any convex 3-polytope P, draw a
sphere that contains P and, from a point p in the interior of P, (1) use radial projection from
p with the vertices of P onto the sphere and (2) move the projected points on the sphere so
that they are all contained in the upper hemisphere. As an example, consider Π applied to the
tetrahedron:

Figure 2. An interior point and the radial projective lines in red. The projected points in green.

As we can see, Π applied to the tetrahedron yields the complete graph K4. This is easier to
see when we project the graph embedded on the upper hemisphere vertically onto the sphere’s
equatorial plane (which we may identify with R2). The identification of Π applied to the
tetrahedron with K4 will be important when we show that Π is surjective.

Now note that from the definition of Π, it is clear that the graph of any 3-polytope is
simple, since a 3-polytope does not have any loops or multiple edges, and Π is simply project-
ing. Similarly, Π yields a planar graph, since the projection onto the sphere from an interior
point guarantees that no edges cross. Therefore, we only need to carefully establish the 3-
connectedness of the graph of a 3-polytope. This statement is known as Balinski’s theorem,
and it states that the graph of a convex d−polytope is d−connected [1]. We will only prove
the 3-dimensional case of Balinski’s theorem, but the proof for the d−dimensional case follows
from the same argument using induction. We introduce a few more definitions before giving
the proof.
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Definition 2.1. A set of vertices X in a graph G separates x , y ∈ V (G) if every path from x to
y contains an element of X . We then say that X is an x,y−separating set.

x y

Figure 3. The set of vertices in red is an x , y−separating set

Definition 2.2. Let P be a polytope and let x be a vertex of P. The link of x , denoted by Gx , is
the graph induced by the set of edges of P that are not incident to x but that lie on a face that
contains x .

x

Gx

Figure 4. The link of a vertex in the cube

We now have defined all the concepts necessary to prove Balinski’s theorem. The following
lemma will be fundamental in the proof of Balinski’s theorem.

Lemma 2.1. If P is a 3-polytope and x is any vertex in P, then Gx is isomorphic to the graph
of a 2-polytope.

Proof: Consider the edges e1, . . . , ek incident to x labeled in a way such that ei and ei+1 belong
to the same face in P. Let u1, . . . , uk be the other endpoints of e1, . . . , ek, respectively. Since the
faces of a 3-polytope are polygons, their graphs are cycles. Thus, for each 1≤ i ≤ k−1, there is
a path from ui to ui+1 that does not contain x but goes through every vertex distinct to x in the
face for each i. The same applies to uk and u1. Denote these paths from ui to ui+1 by Li,i+1. Now
note that Gx is the subgraph induced by the set of edges E(L1,2)∪E(L2,3)∪. . .∪E(Lk−1,k)∪E(Lk,1),
where E(L) is the set of edges in the graph L. Thus, Gx is a cycle, so it is isomorphic to the
graph of a polygon. □

To better understand the proof of the lemma above, one may refer to the following picture:

x

u1 u2

u3

u4

. . .

uk

Figure 5. The dashed red lines represent the paths between the vertices adjacent to x . These induce Gx
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We need one more result, which is a well-known theorem from graph theory.

Theorem 2.2 (Menger, 1927). Let G be a graph and let x , y be two non-adjacent vertices
in G. Then, the minimum size of a x , y−separating set is equal to the maximum number of
vertex-disjoin paths from x to y .

We do not give the proof of Menger’s theorem since it is a standard result in graph theory
and it would deviate from our topic. However, see [8] for a reference. We are now prepared to
state Balinski’s theorem for dimension d = 3. We follow a proof by Pineda [5].

Theorem 2.3 (Balinski, 1961). The graph of a 3-polytope is 3-connected.

Proof: Let P be a 3-polytope and let G = G(P) be its graph. If G is a complete graph, then we
are done since G has at least four vertices. Suppose then that G is not the complete graph, and
let y, z ∈ V (G). If y and z are adjacent, then the only way to disconnect them is to remove
one (or both) of them. Now note that since P is a 3-polytope, then y and z have degree at
least three, and each of the faces containing y and z are polygons, so their graphs are cycles.
Therefore, deleting y or z, or both, does not disconnect G. Then consider the case where y
and z are not adjacent vertices. Let A be a minimum y, z−separating set. By Menger’s theorem,
there are |A| vertex-disjoint paths from y to z, and each of these paths must contain exactly one
vertex from A. This follows because A is a separating set, so every path from y to z contains
a vertex from A, so if there are |A| vertex-disjoint paths, each must contain only one vertex
from A. Let L = (u1, . . . , uk) be one such path, where u1 = y and uk = z, and let u j ∈ V (L)∩ A
be the unique vertex in L contained in A for some 1 < j < k. Write u j = x . By the lemma
above, Gx is isomorphic to the graph of a polygon, and, in particular, Gx is 2-connected. Now
note that since every vertex in G has degree at least three, the neighbors of x in G must be
vertices in Gx . Therefore, u j−1, u j ∈ V (Gx). Now note that A\{x} must separate u j−1 and u j.
If it did not, then there would be a path (u j−1, v1, . . . , vn, u j) where v1, . . . , vn /∈ A, but then
(u1, . . . , u j−1, v1, . . . , vn, u j, . . . , uk) would be a path from y to z not containing elements from A,
which contradicts the assumption that A is a y, z−separating set. Hence, since Gx is 2-connected
and A\{x} separates two vertices in Gx , we have |A\{x}| ≥ 2, which implies |A| ≥ 3. This
establishes the 3-connectedness of G. □

3 Π is injective

In this section, we will show that the projection map Π is injective. To do so, we first need to
introduce the notion of graph embedding. Informally, a graph embedding on a given surface is
a way to “draw” that graph on that surface. We can formalize this notion as follows:

Definition 3.1. We say (G,ϕ,Σ) is an embedding of the graph G = (V, E) on the surface Σ if
ϕ : G→ Σ such that

• For every edge e ∈ E, we have that ϕ(e) is an arc on Σ with endpoints ϕ(v) and ϕ(w)
where v, w ∈ V are the vertices incident to e.

• The interior of ϕ(e) is disjoint from ϕ(e′) and ϕ(v) for any e′ ∈ E \ {e} and v ∈ V .
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For our purposes, it suffices to consider embeddings on the plane R2 and the sphere S2. Note
that we can now define what it means for a graph to be planar more rigorously: G is planar if
and only if it can be embedded into R2. Also, note that any embedding into a 2-manifold will
partition the manifold into topological disks, which we call faces.

Remark 3.1. G is planar if and only if it can be embedded into S2. It is clear that if we can
embed G on R2, then we can embed it into S2 since S2 \ {p0} ≃ R2 . Also, if we can embed
G on S2, we can imagine moving our embedded graph so that it lies entirely on one of the
hemispheres of S2. Then, projecting onto the equatorial plane gives an embedding into R2.

Example 1. The following embeddings are equivalent on the sphere but not on the plane:

Figure 6. Two embeddings that are equivalent on the sphere but not on the plane.

In the plane, it is clear that the embeddings are distinct since the vertex of degree 1 lies
inside a triangle on only one of the embeddings. In the sphere, we could imagine taking the
left embedding, fixing e while dragging f through the other hemisphere until it lies “above” e.

Note that if G is the embedded graph resulting from projecting a polytope P into S2 as
described in the definition of Π, then G contains all of the combinatorial structure of P: we
know that P, as a combinatorial object, is completely determined by its faces, edges, and vertices
with their respective containments. Clearly, this is all information we can obtain from the graph
embedding.

Hence, we conclude that Π is actually injective into the collection of 3-connected, planar,
simple graph embeddings. It turns out that 3-connected, planar, simple graphs have a unique
embedding on S2 up to homeomorphism, a well-known result by Whitney (see [9]). Clearly, this
tells us that Π is indeed injective. Thus, the remainder of this section is devoted to establishing
Whitney’s Theorem.

Theorem 3.2 (Whitney’s Theorem). Any 3-connected, simple, planar graph has a unique
embedding on S2 up to homeomorphism.

Example 2. Consider the following distinct embeddings of the same graph on S2:
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Figure 7. Two distinct embeddings of a simple, planar graph that fails to be 3-connected.

We know that these are distinct embeddings on S2 because the embedding to the right has a
face of degree 4 while the one to the left does not.

Definition 3.2. Let ϕ be an embedding of G into S2 (R2). Then, we say that an embedding ψ
of G into S2 (R2) is the mirror of ϕ if, for any vertex v ∈ V , the order of the edges incident to v
according to ψ is the same as ϕ but reversed.

Intuitively, two graph embeddings are mirrors of each other if you can obtain one of them
by flipping the other one like a pancake.

Remark 3.3. If ϕ andψ are homeomorphic embeddings into S2, then either they are equivalent
or they are mirrors of each other.

Definition 3.3. A connected subgraph C ⊂ G is a cycle iff every vertex of C has degree 2 in C .

Lemma 3.4. Let G be a planar graph and let C ⊂ G be a cycle. If G \C is connected, then ϕ(C)
is the boundary of a face of G under any embedding ϕ of G into S2.

Proof: Suppose that G \ C is connected and let ϕ be an embedding of G into S2. By the Jordan
Curve Theorem, we know that S2/ϕ(C) consists of two connected components A and B. Since
G \ C is connected, ϕ(G \ C) must be contained entirely in one of the components of S2/ϕ(C)
which we can assume WLOG to be A. Then, ϕ(C) = ∂ B and B must be a face of the embedding
of G by ϕ. □

Proof (Whitney’s Theorem): Let G be a 3-connected planar graph and suppose by contradic-
tion that we have two distinct embeddings ϕ and ψ of G onto S2 that are not mirrors of each
other. Then, there must exist a cycle C ⊂ G such that ϕ(C) is the boundary of a face butψ(C) is
not. By Lemma 3.4, this tells us that G \ C is disconnected. Hence, we can write G = A∪ B ∪ C
where A, B, and C partition the vertices of G and there are no edges between A and B.
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Figure 8. Removing the blue vertices disconnects the graph, contradicting its 3-connectivity.

Since ϕ embeds G into S2 and has ϕ(C) as the boundary of a face, we can assume WLOG that
ϕ(C) is the boundary of the outer face if we consider ϕ as an embedding into R2. Then, there
must exist edges e1 and e2 adjacent to both A and C such that B is contained in the interior of
ϕ(e1)∪ϕ(e2)∪ϕ(T )∪ϕ(S) for some T ⊂ C and some S ⊂ ∂ A. Thus, removing the vertex incident
to e1 in C and the vertex incident to e2 in C disconnects A and B, contradicting the 3-connectivity
of G. We conclude that there exists only one embedding of G up to homeomorphism. □

This visual proof of Whitney’s Theorem is due to Marc Culler [2].

4 Π is surjective

It remains to show that the map Π is surjective onto the set of simple, 3-connected planar
graphs. In particular, given such a graph G, we will show how to construct a polytope P such
that Π(P) = G.

The basic strategy is to perform a series of n reductions on G to yield K4, which (as mentioned
above) corresponds to the tetrahedron under Π. First, we need to define a reduction on graphs
that preserves 3-connectedness since K4 is the smallest 3-connected graph. Then we will see:
(a) if G′ obtained from G by such a reduction is the image of a 3-polytope P ′ under Π, then G is
the image of a 3-polytope P; and (b) every 3-connected planar graph is reducible to K4 in this
way, allowing us to inductively construct a 3−polytope P with graph G. The complexity of this
proof structure (for Steinitz himself proved the result in this way, though now two other general
proof methods are known) is one of the most striking characteristics of Steinitz’s theorem, and
the structure is no less beautiful if the details are at times tedious (for which reason some such
details, mainly Proposition 4.4, will be assumed rather than proven).

Suppose we have an arbitrary 3-connected planar graph G.

Definition 4.1. Let ∆ be K3, and let Y K1,3, the 3-star. Then a ∆Y reduction consists of the
following two steps:
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(1) Choose a subgraph of G equal either to∆ with no internal vertices (so G \∆ is connected)
or to Y with center of degree exactly 3 (so it is not contained in a larger star). Then
replace ∆ by Y or Y by ∆ on the same vertices. (To be more precise, we will call the
former a ∆-to-Y operation, which requires the addition of a new vertex, and the latter a
Y -to-∆ operation, which removes a vertex.)

(2) Delete any multiple edges and contract any series edges created by (1).

Step (2) is where the size of G is reduced. A ∆-to-Y reduction and a Y -to-∆ reduction can each
reduce the size of G by 0, 1, 2, or 3, so that there are eight classes into which these reductions
fall. See Figure 9 for two examples.

Figure 9. (i) shows a∆-to-Y reduction that reduces the size of G by 1; (ii) shows a Y -to-∆ reduction that reduces
the size of G by 2. Dotted edges are unaffected by the reductions.

From these it is clear that the magnitude of reduction by a Y -to-∆ reduction is equal to the
number of edges (3 are possible) that already exist in G between the leaves of Y –each of these
results in a multiple edge–and the magnitude of reduction by a ∆-to-Y reduction is equal to
the number of vertices of ∆ with degree exactly three–each of these results in a series edge. We
get the following lemma easily:

Lemma 4.1. ∆Y reductions preserve 3-connectedness.

Proof: An equivalent definition of 3-connectedness to the one given in Definition 1.1 is that,
for any two vertices u, v ∈ G, there are at least 3 disjoint uv-paths. Only one of the 3 (or more)
disjoint uv-paths in G can use an edge in the subgraph replaced by a ∆Y reduction (or they
would meet at a vertex), and it is clear that the reductions replace any subpath contained in ∆
or Y by a suitable new one. □

Now we know by what means we can reduce G to K4. How can we then ‘reverse’ this reduction
to build up P from the tetrahedron such that Π(P) = G? The following lemma tells us:
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Lemma 4.2. Let G′ be obtained from G by a ∆Y reduction. Then if G′ is the graph of a
3-polytope, so is G.

Before we begin the proof, recall that, by Lemma 3.4, each of the regions in the graph G′

(when drawn with no crossing edges, which is always possible for a planar graph) represents a
face of the 3-polytope P ′ which has G′ as its graph. Thus, by a slight abuse of language, we can
refer unambiguously to these regions in G′ as faces. In Figure 11, for instance, we will call the
triangular region of the right-hand graph the ‘∆ face.’ Further, we will say a point a is ‘below’ a
face f of P ′ if a and P ′ \ f are in the same half-space defined by the plane on which f lies, and
we will say b is ‘above’ f if it is in the other half-space.

Proof: Suppose P ′ is the 3-polytope whose graph is G′. We will prove the lemma by describing
the construction on P ′ that gives a new 3-polytope P with graph G. Each of the eight classes of
reduction requires a slightly different construction.

Suppose G′, the graph of 3-polytope P ′, is obtained from G by a ∆-to-Y reduction which
reduces the size of G by 1. (This is the first example in Figure 9.) Take the plane defined by
two of the three leaves of the Y in G′ produced by the reduction (points a and b) and a point
on the third edge (whose leaf we do not use) that is not one of the vertices (point c). Cut off
the vertex represented by the center of the Y by this plane; the convex hull P of the result is
clearly a 3-polytope with graph G. This reversal is shown in Figure 10.

Figure 10. Reversing a ∆-to-Y reduction that reduces the size of G by 1, by cutting a vertex off of P ′ by the
plane through a, b, c.

All ∆-to-Y reductions can be reversed by cutting off the vertex representing the Y they
produce by a suitable plane.

Now suppose that G′, the graph of 3-polytope P ′, is obtained from G by a Y -to-∆ reduction
which reduces the size of G by 2. (This is the second example in Figure 9.) Take the convex hull
of P ′ with a point p that is above the ∆ face, lies on the plane on which face A is situated, and
below faces B and C . The result is a 3-polytope P, and it has graph G. This reversal is shown in
Figure 11.

All Y -to-∆ reductions can be reversed by taking the convex hull of P ′ with a suitable point
in this way.

There is a problem, however, in reversing a Y -to-∆ reduction which preserves the size of G.
For we want, similarly to the example described above, to take the convex hull of P ′ with the
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Figure 11. Reversing a Y -to-∆ reduction that reduces the size of G by 2, by taking the convex hull of P ′ with p
on the same plane as A, above the ∆ face, and below B and C .

intersection of the three planes given by faces A, B, C . If this convex hull is to be a 3-polytope,
the planes must intersect at a point above the ∆ face, but this is not necessarily true: they could
be parallel or intersect at a point below the ∆ face. (We do not have this problem for any of
the other classes of Y -to-∆ reductions because the strictest requirement for the selected point
is that it lies on a line intersecting the ∆ face, so we can always choose a point that will yield
a 3-polytope.) This problem is resolved as follows: fix the ∆ face in place, and select a point
on its interior. Extend a projective ray from this point to all vertices in P ′ except for those on
the ∆ face; push each vertex outward along this ray by the same scalar multiple of the ray’s
length. (Notice that this preserves the combinatorial properties of P ′, if not the geometric ones.
We can imagine this process as blowing the 3-polytope up like a balloon.) Some suitably large
scalar shifts the intersection point onto (or generates one on) the correct side of P ′, and we can
proceed as above.

(Note that K4 is never obtained directly from this problematic reduction. Clearly, the
described solution would not work for any selection of three faces of the tetrahedron. More
generally, we can say that there are no shared edges among three faces with edges on the ∆
face obtained by this particular reduction. The existence of an edge shared by any two of these
faces would mean that the graph on which the reduction was performed had a vertex of degree
2, which is impossible in a 3-connected graph.) □

Corollary 4.3. Any graph that is reducible to K4 by a series of ∆Y reductions is the graph of a
3-polytope.

Notice how much more involved it is to find the polytope of a given graph than to find the
graph of a given polytope. Lemma 4.2 is especially valuable because it not only tells us that the
construction of a polytope with ∆Y -reducible graph G is theoretically possible but also shows
us how to perform it in actuality. See Figure 12 for an example of the whole process–graph
reduction and 3-polytope construction–beginning with a ∆Y reducible graph G whose polytope
is by no means intuitively clear.

Armed with Corollary 4.3, the final piece of the puzzle is the following proposition:

Proposition 4.4. Every 3-connected planar graph is reducible to K4 by a series of ∆Y reduc-
tions.
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Figure 12. Constructing a 3-polytope P with given 3-connected planar graph G.

We could prove this proposition in a number of ways. For instance, since there are 6 classes of
∆Y reduction that actually do reduce the size of G and two that do not, it suffices by induction to
show that for any 3-connected graph on more than four vertices either one of the size-reducing
classes is applicable, or the two size-preserving ones can be applied so as to make this true.
It is tedious to show this and requires some very complex graph-theoretical concepts. See [3,
Chapter 13], or Steinitz’s own proof in [7] for details. We could also show: (1) any 3-connected
minor of a ∆Y -reducible graph is ∆Y -reducible as well; (2) every 3-connected planar graph is
the minor of a grid graph; and (3) every grid graph is∆Y -reducible to K4. In combination, these
prove the proposition. None of these lemmas has a very interesting proof; see [10, Chapter 4]
if interested. A proof of the proposition will not be shown here.

This completes our proof of Steinitz’s Theorem: we have shown that the projective map
Π : {convex 3-polytopes} → {simple, 3-connected planar graphs} is both injective and surjective,
and so bijective.
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